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Abstract

Larger calving events in the Antarctic Ice Shelf (AIS)

have been seen in the past few decades, and are a po-

tential precursor for collapse. We useDeep Learning to

predict instability and calving events on the AIS. To do

so we use a 4D multivariate datacube of Essential Cli-

mate Variables (ECVs) resampled to 200m resolution,

using a novel Gaussian Random Field (GRF) represen-

tation. The resulting datacube is coupled with a calv-

ing inventory from Qi et al. (2021) [1] , limited to the

study site, before being processed using a UNet / VGG

model. Preliminary results suggest calving being learn-

able with a lead time of 6 months with a calving/no-

calving F1-score of 0.9, on large calving events.

Method

Samples from the datacube are aligned with the label

dataset [1] at an offset in time, i.e. we use future calv-

ing events as the target, sampled with a lead time-
argument. The labels are marked as being "calving" if

there is a calving event at any point between the time

of the data, t, and the time plus lead time, t + T . Initial

experiments have established correlations on single-class

lead times, to be later extended to multiple lead time-

classes following the given definition for classes, YT [t] :
YT [t] =

⋃
Labels[t, t + T ] | T ∈ [9, 6, 3],

Labels are assumed to be complete for supervised learn-

ing. Our first study site, Larsen C, has a few smaller calv-

ing events coinciding with the available data, and one

very large one, the A-68 Iceberg of 2017. We split the

data into train/test areas of interest (AOIs), where a por-

tion of A-68, and some smaller calving events were re-

served for validation. We train using use Focal Loss [2],

as our target for areas that are identified as calving within

the range of the given lead time. For data augmenta-
tion, we currently only use rotation on random samples.

Sampling & Data

We read the data in the resolution of the cube and make

samples from chips and rasterised labels over the avail-

able data. The samples consist of a (Data, Label)-pair,
where we can generate samples a tunable lead time-
parameter.

Figure 1: Sampling pipeline.

The ECVs included currently in the datacube are:

Ice Velocity,

Wind Speed,

Basal melt,

Surface Mass Balance (SMB / RACMO)

Firn thickness & Firn Air
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Training

Our sample chips have the data, sampled from the datacue at time t, and the labels sampled with an added lead-time

t + T . The input data is all sampled to the same resolution as the input chips of 200 m. We train a simple 5-layer
Attention-UNet, [3], (Figure 2), to predict the future calving as a semantic segmentation task. We are using a standard

AdamW optimizer, [4], with Focal Loss as our target [2]. Due to the sparsity of our available label set of known calving

events, the samples are kept small, at 128 × 128. For training/validation we split our area of interest (AOI) spatially,
to avoid temporal mixing. We then sample randomly from a class-balancing weighted grid of valid samples. Since

the models are trained on smaller chips, providing a full-scale prediction over the entire ice shelf is done by stitching

together multiple samples. For this, we prepare a grid that covers the ice shelf, with a margin of overlap that allows

us to isolate the predictions that are entirely covered by the receptive field of the feature-detection components of

the model. For more robust results we randomly apply some rotation to the samples in our initial experiments, later

experiments are expected to include more augmentations in the second phase of the project.

Figure 2: Basic UNet - model architecture.

Explaining

The final component of the experiments is to test the trained model through an eXplainable AI (XAI), which highlights

themost significant input features for a given prediction. Our approach is initially based onGrad-CAM, [5], which makes

use of false labels and backpropagation to identify key input variables, or areas in the multivariate input which have

strong correlations to the predicted output. The resulting heat map has a 1:1 relationship with the input data, which

allows us to later compare side by side the predictions and the input. Ideally this results in a situation where scientists

can self-evaluate the predictions based on the significance placed on the inputs. The saliencymap does not mean much

without the set of value names of its weights. As such, it is interpretable as a correlation map. Comparisons of these

maps should also establish the degree to which robustness follows from longer training, and delayed generalisation,

grokking [6], which is believed to be an emergent feature of neural networks.

Results

Our first models using semantic segmentation have an F1-score of 0.9 over the test sections, which include the eastern
portion of the A-68 iceberg. These results indicate that the included variables cover the required information to predict

future calving events on the Larsen C ice shelf. Later experimentswill establish towhat degree this approach generalises

across other ice shelves.

Figure 3: Example from model training

Figure 3 shows output during training, where the model is starting to fit the curve of the calving event. The model is

here at an F1 of 0.916.

Future work

The work will continue on a second study site over Pine Island, where we will also test transfer learning across the

two sites/ice-shelves. As the models converge we will also include XAI heat-maps at regular intervals to monitor the

saliency of the different inputs to the model, as well as the changes over these as the models improve. Finally the

model prediction and associated heat maps will be evaluated by domain experts from Lancaster University, who will

evaluate how reasonable the model correlations are, based on our current understanding of ice shelf dynamics. The

AI4IS project will also aim at future scientific publication, which will be shared on the project website.
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