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Abstract Model

Larger calving events in the Antarctic Ice Shelf (AlS) have been
seen in the past few decades, and are an important ecological
marker for the overall health of the ice shelves. We have used
a novel Gaussian Random Field (GRF)-represented data cube
in combination with Attention U-Nets to explore the pre-
dictability of calving events in the AlS. The data cube consists
of several Essential Climate Variables (ECVs), which were se- N Y 6 monthe brior to calving. 3 months prior to calving.
lected based on their significance to the AlS, along with some

supplementary data sources. Labelled calving events were
collected from the 15 vear inventory of Qi et al. [/], which
required slight geospatial corrections before being rasterised.
Trained U-Nets were subsequently analysed with Explainable
Al (XAl), using a variation Guided Back Propagation [8] to pro-
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Expert evaluation of the combined input, saliency-maps, and
predictions found the models seem to correspond well with
current physical models.
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(a) Input data example. 3 months prior (b) Predicted likelihood of calving on test-data, 6 month lead time (c) Predicted likelihood of calving on test-data, with varying lead

to calving event of A-68 iceberg, before event, varied input data from subsets of Figure 3a. Label time, combined IV + BM used as input data. Label data outlined
showing Ice Velocity (IV) and Basal data outlined with dotted red line. with dotted red line.
Melt (BM).

Figure 3: Example inputs from 3 month prior to the A-68 calving event are shown in Figure 3a. Figures 3b and 3c show outputs from models trained on subsets of the input example, and
with modifications on lead-time respectively.

Dataset (source) Original Resolution Raster-data samples from the data cube were given as inputs (Figure 3a),

V3] 200 x 200 m from which the models produce segmented maps with likelihood of

Surface Mass Balance (SMB) [9] 27 x 27 km . . . .

Firn thickness [10] < 77k belonging to a calving region (Figures 3b and 3c). The target shapes were

Firn air content [10] 27 x 27 km derived from Qi et al. [ 7] (dotted red lines of calving in Figures 3b and 3c,
Figure 1: Location of first study site, Larsen C. BM [2] 1000 x 1000 m original vector data shown as light blue in Figure 2).

Wind Speed and direction (WS) [1] 31 x 31 km

~ : Table 2: Table of datasets contained in the used version of Data Cube.
| ’ All data was resampled from original resolution to 200 m resolution.

Temporal data splits Results
6 -5 -4 -3 -2 -] 0 Lead time
‘ . 5 P - Subset 3 months 6 months 9 months 12 months
Q Pmonth .. ",F;”di” — le:'“'““”“m Cating 1V 0.951 +£0.015 [0.936 £ 0.0043 0.927 4+ 0.00850.945 + 0.0073
data | validation data - event BM 0.865 £ 0.0097 | 0.822 4 0.024 0.785 4 0.04 0.794 £ 0.0086
IV + BM 0.941 £ 0.0036 0.937 +0.0025 0.926 + 0.0019 0.928 + 0.0032

Figure 4: Example of 6 month temporal data split schema, showing the

3 month sampling window for validation, and the inclusion of lifting SMB 0.605 £+ 0.11 0.622 &+ 0.18 0.488 4+ 0.0065 | 0.506 £ 0.011
strategy. WS 0.786 & 0.02 0.739 & 0.02 0.749 £ 0.009 0.778 & 0.01
firn thickness 0.550 £ 0.1 0.596 £+ 0.14 0.623 £0.14 0.630 £ 0.01

ceshel Figure 4 showing the schema used for temporal  firnair content| 0.491 +0.005 = 0.486 +£0.009 | 0.487 +£0.006 | 0.487 4 0.0005

ocean e 0T split of data, where the "lead time" scheme in- e s. Highest validation F1-score mean vs lead time. Highest F1-scores per lead time highlighted in bold,
tended to provide additional lifting by including and second highest performance italicised. Values reported are the Mean (M) of highest F1-scores and their
respective Standard Deviation (SD).
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Figure 2: Data split, showing data coverage (dark blue). Calving events between

2015-2020 in light blue, with the major event of A-68 being the largest. temporally closer data as part of the training data.
These splits were used in concert with the spatial .
Model Summary split AOIs (Figure 2) for a combined spatiotemporal Table 3 shows how our models performed best when [V was part of the train-

splitting strategy. The test-data was kept separate ing data. The second strongest correlation to performance was BM, leading

Model temporally and used for a qualitative evaluation by us to experimehts vvit.h combined datasgts of both IV and BM. These experi-
Model Attention U-Net [6] domain experts along with saliency-maps. ments re§u|ted N a 5|.|ght|\{ reduceq va.r|anc:.e, but overall seemed to perform
Activation Rel.U on par with the IV, with minor qualitative differences.
Encoder Blocks 5
Base channels 16 Explability and Qualitative Evaluation
Output channels 2 . _
Optimizer Ice velocity u : Ice velocity v Basal Melt
Algorithm AdamW [5]
Learning Rate 0.001
B4 0.9
5o 0.9
Weight Decay 0.1
Loss
Loss Function Focal Loss [4]
Y 3
classes (no-calving,
calving)
class weights 1, 2]
reduction mean SRy —— |
, 0 1
Data Augmentahon Figure 5: Model input-saliency across 3 input dimensions, as highlighted using Guided Back Propagation.

nput-shape 364 x 364
?otahpn . 0 € 0, +45) The trained models were analysed using a version of Guided Back Propagation [8] which made a saliency-map over the input variables.
PtHoriz flip) .0 Normalised absolute values of saliencies for positive calving classification are shown in Figure 5. The saliency maps, along with the
P(Vert.flip) 0.5 L. . P . 5 . 5 ' . Y Maps. 5

, model predictions and inputs, was presented for evaluation by domain experts from the Lancaster Environment Centre. Based on
Center Clip 290 X 296 their evaluation the models seemed to align well with current models, and our current understanding of the dynamics of the ice

Table 1: Summary of parameters and hyperparameters used for model and training. shelves.
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