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Abstract

Larger calving events in the Antarctic Ice Shelf (AIS) have been

seen in the past few decades, and are an important ecological

marker for the overall health of the ice shelves. We have used

a novel Gaussian Random Field (GRF)-represented data cube

in combination with Attention U-Nets to explore the pre-

dictability of calving events in the AIS. The data cube consists

of several Essential Climate Variables (ECVs), which were se-

lected based on their significance to the AIS, along with some

supplementary data sources. Labelled calving events were

collected from the 15 year inventory of Qi et al. [7], which

required slight geospatial corrections before being rasterised.

Trained U-Nets were subsequently analysed with Explainable

AI (XAI), using a variation Guided Back Propagation [8] to pro-

duce input saliency maps. The U-Net models reached an

F1-score ≥ 0.9, segmenting areas of future calving events.
Expert evaluation of the combined input, saliency-maps, and

predictions found the models seem to correspond well with

current physical models.

Figure 1: Location of first study site, Larsen C.

Figure 2: Data split, showing data coverage (dark blue). Calving events between

2015-2020 in light blue, with the major event of A-68 being the largest.

Model Summary

Model

Model Attention U-Net [6]

Activation ReLU

Encoder Blocks 5
Base channels 16
Output channels 2

Optimizer

Algorithm AdamW [5]

Learning Rate 0.001
β1 0.9
β2 0.9
Weight Decay 0.1

Loss

Loss Function Focal Loss [4]

γ 3
classes (no-calving,

calving)
class weights [1, 2]
reduction mean

Data Augmentation

Input-shape 364 × 364
Rotation θ ∈ [0, ±45◦)
P(Horiz.flip) 0.5
P(Vert.flip) 0.5
Center Clip 256 × 256

Table 1: Summary of parameters and hyperparameters used for model and training.
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Model

(a) Input data example. 3 months prior

to calving event of A-68 iceberg,

showing Ice Velocity (IV) and Basal

Melt (BM).

(b) Predicted likelihood of calving on test-data, 6 month lead time

before event, varied input data from subsets of Figure 3a. Label

data outlined with dotted red line.

(c) Predicted likelihood of calving on test-data, with varying lead

time, combined IV + BM used as input data. Label data outlined

with dotted red line.

Figure 3: Example inputs from 3 month prior to the A-68 calving event are shown in Figure 3a. Figures 3b and 3c show outputs from models trained on subsets of the input example, and

with modifications on lead-time respectively.

Dataset (source) Original Resolution

IV [3] 200 × 200 m
Surface Mass Balance (SMB) [9] 27 × 27 km
Firn thickness [10] 27 × 27 km
Firn air content [10] 27 × 27 km
BM [2] 1000 × 1000 m
Wind Speed and direction (WS) [1] 31 × 31 km

Table 2: Table of datasets contained in the used version of Data Cube.

All data was resampled from original resolution to 200 m resolution.

Raster-data samples from the data cube were given as inputs (Figure 3a),

from which the models produce segmented maps with likelihood of

belonging to a calving region (Figures 3b and 3c). The target shapes were

derived from Qi et al. [7] (dotted red lines of calving in Figures 3b and 3c,

original vector data shown as light blue in Figure 2).

Temporal data splits

Figure 4: Example of 6 month temporal data split schema, showing the

3 month sampling window for validation, and the inclusion of lifting

strategy.

Figure 4 showing the schema used for temporal

split of data, where the "lead time" scheme in-

tended to provide additional lifting by including

temporally closer data as part of the training data.

These splits were used in concert with the spatial

split AOIs (Figure 2) for a combined spatiotemporal

splitting strategy. The test-data was kept separate

temporally and used for a qualitative evaluation by

domain experts along with saliency-maps.

Results

Subset
Lead time

3 months 6 months 9 months 12 months

IV 0.951 ± 0.015 0 .936 ± 0 .0043 0.927 ± 0.0085 0.945 ± 0.0073
BM 0.865 ± 0.0097 0.822 ± 0.024 0.785 ± 0.04 0.794 ± 0.0086
IV + BM 0 .941 ± 0 .0036 0.937 ± 0.0025 0 .926 ± 0 .0019 0 .928 ± 0 .0032
SMB 0.605 ± 0.11 0.622 ± 0.18 0.488 ± 0.0065 0.506 ± 0.011
WS 0.786 ± 0.02 0.739 ± 0.02 0.749 ± 0.009 0.778 ± 0.01
firn thickness 0.550 ± 0.1 0.596 ± 0.14 0.623 ± 0.14 0.630 ± 0.01
firn air content 0.491 ± 0.005 0.486 ± 0.009 0.487 ± 0.006 0.487 ± 0.0005
Table 3: Highest validation F1-score mean vs lead time. Highest F1-scores per lead time highlighted in bold,

and second highest performance italicised. Values reported are the Mean (M) of highest F1-scores and their

respective Standard Deviation (SD).

Table 3 shows how ourmodels performed best when IVwas part of the train-

ing data. The second strongest correlation to performance was BM, leading

us to experiments with combined datasets of both IV and BM. These experi-

ments resulted in a slightly reduced variance, but overall seemed to perform

on par with the IV, with minor qualitative differences.

Explability and Qualitative Evaluation

Figure 5: Model input-saliency across 3 input dimensions, as highlighted using Guided Back Propagation.

The trained models were analysed using a version of Guided Back Propagation [8] which made a saliency-map over the input variables.

Normalised absolute values of saliencies for positive calving classification are shown in Figure 5. The saliency maps, along with the

model predictions and inputs, was presented for evaluation by domain experts from the Lancaster Environment Centre. Based on

their evaluation the models seemed to align well with current models, and our current understanding of the dynamics of the ice

shelves.
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