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1. We use Gaussian Random Field
representation to generate a
homogenised datacube from
heterogeneous data.

Ice shelf calving is natural process, controlled by internal ice
properties, glaciological stresses and external ocean-
atmosphere forcing. Observations and datasets characterising
these controls exist in a variety of heterogeneous formats,
iIncluding vectors, shapefiles, and gridded products. We use
Gaussian Random Field (GRF) representation in the R-INLA
package to bring these data onto a shared grid - the datacube [1].
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3. The trained model is then used
successfully to predict the A68
event, with a range of lead times.

The U-Net models achieved F1 scores =2 0.9 when predicting
calving areas. Semantic segmentation outputs provide
probabilistic maps of calving likelihood based on data from N
months prior to the event. Visual inspection demonstrates
accurate delineation of observed calving regions at
probabilities > 0.5 up to nine |
months In advance (right).
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2. The datacube is ingested by an Al
model, trained on the A68 calving

event from the Larsen C ice shelf.

We investigated the predictability of the 2017 A68 calving event -
an iceberg more than four times the size of Rome - using an
Attention U-Net architecture trained on 15 years of labelled
calving data, including 2017 [2]. The model performs spatially
explicit, pixel-wise learning of calving-relevant features. Training
employed the AdamW optimiser with Focal Loss, with the
gamma parameter tuned to improve performance on rare and
edge-case events. Random data augmentations were applied to
enhance generalisation and transferability. To assess the
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Figure 2: Data split, showing data coverage (dark blue). Calving events between reduction mean
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4. We repeated this for a different
ice shelf, and early results are
promising. Next step - Digital Twin?

To assess workflow transferability, we repeated the analysis for
Pine Island Glacier (PIG), which calves more frequently than
Larsen C. The model was trained on three PIG calving events
using ice velocity and strain-rate fields, identified as key
predictors at Larsen C. Performance was evaluated using
spatially independent train-test splits, yielding F1 scores of ~0.8
across all lead times (below); evaluation on a temporally
iIndependent, leave-one-year-out event is ongoing. Despite
differences in forcing sensitivity - Larsen C being more influenced
by atmospheric forcing - the comparable skill suggests
transferable calving-relevant dynamics. We aim to extend this
framework to the remainder of the Antarctic Ice Sheet (e.g. via
DTC-IS) and to other regions, such as Svalbard (through Svalbard
DT).

Lead time| 3-month | 6-month | 9-month |{12-month

F1score | 0.8367 = | 0.7874%* | 0.8161 * | 0.8276
0.0016 0.068 0.05 0.0067

|ICE SHEETS
DIGITAL TWIN

References:

[1] F. Lindgren, H. Rue, and J. Lindstrom. “An explicit link between Gaussian fields and Gaussian Markov random
fields: The SPDE approach (with discussion)”. Journal of the Royal Statistical Society, Series B, 73(4):423-498, 2011
[2] M. Qi et al. “A 15-Year Circum-Antarctic Iceberg Calving Dataset Derived from Continuous Satellite Observations".
In: Earth System Science Data 13.9 (2021), pp. 4583-4601. DOI: 10.5194/essd-13-4583-2021.

[3] Benn, D.l., Warren, C.R. and Mottram, R.H. (2007) ‘Calving processes and the dynamics of calving glaciers’, Earth-
Science Reviews, 82(3-4), pp. 143-179. https://doi.org{10.1016/j.earscirev.2007.02.002

[4] Jansen, D., Luckman, A.J., Kulessa, B., Holland, P.R. and King, E.C. (2018) ‘Brief communication: Newly developing
rift in Larsen C Ice Shelf presents significant risk to stability’, The Cryosphere, 12(1), pp. 1-8.
https://doi.org/10.5194/tc-12-1-2018

LLancaster E==
Un ]_Ve I-Slty (R s & t

g csa


https://doi.org/10.1016/j.earscirev.2007.02.002

	Slide 1

